Simultaneous Electrophysiological and Morphological Assessment of Impact Damage to Nerve Cell Networks
Creators
Description
A ballistic pendulum impulse generator was used to impact networks in primary culture growing on microelectrode arrays. This approach has the advantage of imparting pure tangential acceleration insults (50 to 300 g) with simultaneous morphological and electrophysiological multichannel monitoring for days before and after the impact. Action potential (AP) production, network activity patterns, and cell electrode coupling of individual units using AP waveshape templates were quantified. Network adhesion was maintained after tangential impacts up to 300g with minimal loss of pre-selected active units. Time lapse phase contrast microscopy revealed stable nuclei pre-impact, but post impact nuclear rotation in 95% of observations (n= 30). All recording experiments (n=31) showed a repeatable two-phase spike production response profile: recovery to near reference in 1-2 hrs, followed by a slow activity decay to a stable, level plateau approximately 30-40% below reference. Phase 1 consisted of a complex two-step recovery: rapid activity increase to an average 23.6% (range: 11-34%) below reference, forming a level plateau lasting from 5 to 20 min, followed by a climb to within 20% of reference where a second plateau was established for 1 to 2 hrs. Cross correlation profiles showed changes in firing hierarchy after impact, and in spontaneous network oscillatory activity. Native oscillations were found in the Delta band (2 to 3 Hz), and decreased by approximately 20% after impact. Under network disinhibition with bicuculline, oscillations were slower (0.8-1Hz) and decreased 40% after impact. These data link network performance deficits with microscopically observable subcellular changes.
Additional details
Identifiers
Dates
- Issued
-
2025-02-15T14:25:31Z
References
- Bakay, L., Lee, J.C., Lee, G.C., and Peng, J.R. (1977). Experimental cerebral concussion part 1: an electron microscopic study. J. Neurosurg. 47, 525-531. https://doi.org/10.3171/jns.1977.47.4.0525
- Lucas, J.H., and Wolf, A. (1991). In vitro studies of multiple impact injury to mammalian CNS neurons: prevention of perikaryal damage and death by ketamine. Brain Res. 543, 181-193. https://doi.org/10.1016/0006-8993(91)90027-s
- Ding, M.C., Wang, Q., Lo, E.H., and Stanley, G.B. (2011). Cortical excitation and inhibition following focal traumatic brain injury. J. Neurosci. 31, 14085-14094. https://doi.org/10.1523/jneurosci.3572-11.2011
- Johnstone, V.P.A., Yan, E.B., Alwis, D.S., and Rajan, R. (2013). Cortical hypoexcitation defines neuronal responses in the immediate aftermath of traumatic brain injury. PLoS ONE 8, e63454. doi:10.1371/journal.pone.0063454 https://doi.org/10.1371/journal.pone.0063454
- Gross, G.W., Wen, W., and Lin, J. (l985). Transparent indium-tin oxide patterns for extracellular, multisite recording in neuronal cultures. J. Neurosci. Methods 15, 243-252. https://doi.org/10.1016/0165-0270(85)90105-0
- Gross, G.W. (2011). Multielectrode arrays. Scholarpedia 6, 5749. https://doi.org/10.4249/scholarpedia.5749
- Gross, G.W. (1994). Internal dynamics of randomized mammalian neuronal networks in culture, in: Enabling Technologies for Cultured Neural Networks. D.A. Stenger, and T.M. McKenna (eds). Academic Press: New York, pps. 277-317.
- Lucas, J.H., Czisny, L.E., and Gross, G.W. (l986). Adhesion of cultured mammalian CNS neurons to flame-modified hydrophobic surfaces. In Vitro Cell Dev. Biol. 22, 37-43. https://doi.org/10.1007/bf02623439
- Ransom, B.R., Neale, E., Henkart, M., Bullock, P.N., and Nelson, P.G. (1977). Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiological properties. J. Neurophysiol. 40, 1132-1150. https://doi.org/10.1152/jn.1977.40.5.1132
- Keefer, E.W., Gramowski, A., and Gross, G.W. (2001). NMDA receptor dependent periodic oscillations in cultured spinal cord networks. J. Neurophysiol. 86, 3030-3042. https://doi.org/10.1152/jn.2001.86.6.3030
- Potter, S.M., and DeMarse, T.B. (2001). A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17-24. https://doi.org/10.1016/s0165-0270(01)00412-5
- Morefield, S. I., Keefer, E.W., Chapman, K. D., and Gross, G.W. (2000). Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens. Bioelectron. 15, 383-396. https://doi.org/10.1016/s0956-5663(00)00095-6
- Meyer, J.M., Wolf, B., and Gross, G.W. (2009). Magnetic stimulation and depression of mammalian networks in primary neuronal cell cultures. IEEE Trans. Biomed. Eng. 56, 1-12. https://doi.org/10.1109/tbme.2009.2013961
- Turnbull, L., and Gross, G.W. (2005). The string method of burst identification in neuronal spike trains. J. Neurosci. Methods 145, 23-35. https://doi.org/10.1016/j.jneumeth.2004.11.020
- Ts'o, D.Y., Gilbert, C.D., and Wiesel, T.N. (1986). Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by crosscorrelation analysis. J. Neurosci. 6, 1160-1170. https://doi.org/10.1523/jneurosci.06-04-01160.1986
- Gerstein, G.L., and Perkel, D.H. (1972). Mutual temporal relationships among neuronal spike trains. Biophys. J. 12, 453-473. https://doi.org/10.1016/s0006-3495(72)86097-1
- Ostojic, S., Brunel, N., and Hakim, V. (2009). How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. J. Neurosci. 29, 10234-10253. https://doi.org/10.1523/jneurosci.1275-09.2009
- Brewer, G.J., Boehler, M.D., Jones, T.D., and Wheeler, B.C. (2008). NbActiv4 medium improvement to neurobasal/B-27 increases neuron synapse densities and network spike rates on multielectrode arrays. J. Neurosci. Methods 170, 181-187. https://doi.org/10.1016/j.jneumeth.2008.01.009
- Smith, D.C., and Gross, G.W. (2014). A MEA-based model for rapid acceleration injury to neuronal networks and studies of recovery. Proceedings of the 9th International Meeting on Substrate Integrated Microelectrode Arrays, 156-157. doi:10.13140/RG.2.1.4395
- Ham, M., Bettencourt, L. M., McDaniel, D., and Gross, G.W. (2008). Spontaneous coordinated activity in cultured networks: analysis of multiple ignition sites, primary circuits, and burst phase delay distributions. J. Comput. Neurosci. 24, 346-357. https://doi.org/10.1007/s10827-007-0059-1
- Paddock, S.W., and Albrecht-Buehler, G. (1988). Rigidity of the nucleus during nuclear rotation in 3T3 cells. Exp. Cell Res. 175, 409-413. https://doi.org/10.1016/0014-4827(88)90205-4
- De Boni, U. (1994). The interphase nucleus as a dynamic structure, in: Mechanical Engineering of the Cytoskeleton in Developmental Biology. R. Gordon (ed). Academic Press: Cambridge, pps. 149-153. https://doi.org/10.1016/s0074-7696(08)61541-7
- Pinton, G., Gennisson, J.L., Tanter, M., and Coulouvrat, F. (2014). Adaptive motion estimation of shear shock waves in soft solids and tissue with ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1489-1503. https://doi.org/10.1109/tuffc.2014.3063
- Espindola, D., Lee, S., Pinton, G. (2017). Shear shock waves observed in the brain. Phys. Rev. Applied 8, 1-9. https://doi.org/10.1103/physrevapplied.8.044024
- Effgen, G.B., Vogel, E.W., III., Lynch, K.A., Lobel, A., Hue, C.D., Meaney, D.F., Bass, C.R., and Morrison, B., III. (2014). Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures. J. Neurotrauma 31, 1202-1210. https://doi.org/10.1089/neu.2013.3227
- Buzsaki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926-1929. https://doi.org/10.1126/science.1099745
- Vakorin, V.A., Doesburg, S.M., de Costa, L., Jetly, R., Pang, E.W., and Taylor, M.J. (2016). Detecting mild traumatic brain injury using resting state magnetoencephalographic connectivity. PLoS Comput. Biol. 12, e1004914. doi:10.1371/journal.pcbi.1004914 https://doi.org/10.1371/journal.pcbi.1004914
- Fisahn, A., Pike, F.G., Buhl, E.H., and Pulsen, O. (1998). Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186-189. https://doi.org/10.1038/28179
- Whittington, M.A., and Traub, R.D. (2003). Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 26, 676-682. doi:10.1016/j.tins https://doi.org/10.1016/j.tins.2003.09.016
- Gloveli, T., Dugladze, T., Saha, S., Monyer, H., Heinemann, U., Traub, R.D., Whittington, M.A., and Buhl, E.H. (2005). Differential involvement of oriens/pyramidale interneurons in hippocampal network oscillations in vitro. J. Physiol. 562, 131-147. https://doi.org/10.1113/jphysiol.2004.073007
- Traub, R.D., Whittington, M.A., Colling, S.B., Buzsaki, G., and Jefferys, J.G. (1996). Analysis of gamma rhythms in the rat hippocampus in vivo and in vitro. J. Physiol. 493, 471-484. https://doi.org/10.1113/jphysiol.1996.sp021397
- Draguhn, A., Traub, R.D., Schmitz, D., and Jefferys, J.G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394, 189-192. https://doi.org/10.1038/28184
- Sheriff, F.G., and Hinson, H.E. (2015). Pathophysiology and clinical management of moderate and severe traumatic brain injury in the ICU. Semin. Neurol. 35, 42-49. https://doi.org/10.1055/s-0035-1544238
- Zenisek, D., Steyer, J.A., and Almers, W. (2000). Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849-854. https://doi.org/10.1038/35022500
- Vacher, H., and Trimmer, J.S. (2012). Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia 53, 21-31. https://doi.org/10.1111/epi.12032
- Nakata, T., Terada, S., and Hirokawa, N. (1998). Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell. Biol. 140, 659-674. https://doi.org/10.1083/jcb.140.3.659
- Maninová, M., Iwanicki, M.P., and Vomastek, T. (2014). Emerging role for nuclear rotation and orientation in cell migration. Cell Adh. Migr. 8, 42-48. https://doi.org/10.4161/cam.27761
- Fung, L.C., and De Boni, U. (1988). Modulation of nuclear rotation in neuronal interphase nuclei by nerve growth factor, by gamma amino butyric acid, and by changes in intracellular calcium. Cell Motil. Cytoskeleton 10, 363-373. https://doi.org/10.1002/cm.970100303
- Walls, M.K., Race, N., Zheng, L., Vega-Alvarez, S., Acosta, G., Park, J., and Shi, R. (2016). Structural and biochemical abnormalities in the absence of acute deficits in mild primary blast-induced head trauma. J. Neurosurg. 124, 675-686. https://doi.org/10.3171/2015.1.jns141571
- Kelley, B.J., Lifshitz, J., and Povlishock, J.T. (2007). Neuroinflammatory responses after experimental diffuse traumatic brain injury. J. Neuropathol. Exp. Neurol. 66, 989-1001. https://doi.org/10.1097/nen.0b013e3181588245
- Chen, N.X., Geist, D.J., Genetos, D.C., Pavalko, F.M., and Duncan, R.L. (2003). Fluid shear-induced NFkB translocation in osteoblasts is mediated by intracellular calcium release. Bone 33, 399-410. https://doi.org/10.1016/s8756-3282(03)00159-5
- Jaalouk, D.E., and Lammerding, J. (2009). Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63-73. https://doi.org/10.1038/nrm2597
- Cho, S., Irianto, J., and Discher, D.E. (2017). Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305-315. https://doi.org/10.1083/jcb.201610042