Published February 15, 2025 | Version v1 | https://doi.org/10.12794/metadc1157638

Simultaneous Electrophysiological and Morphological Assessment of Impact Damage to Nerve Cell Networks

Description

A ballistic pendulum impulse generator was used to impact networks in primary culture growing on microelectrode arrays. This approach has the advantage of imparting pure tangential acceleration insults (50 to 300 g) with simultaneous morphological and electrophysiological multichannel monitoring for days before and after the impact. Action potential (AP) production, network activity patterns, and cell electrode coupling of individual units using AP waveshape templates were quantified. Network adhesion was maintained after tangential impacts up to 300g with minimal loss of pre-selected active units. Time lapse phase contrast microscopy revealed stable nuclei pre-impact, but post impact nuclear rotation in 95% of observations (n= 30). All recording experiments (n=31) showed a repeatable two-phase spike production response profile: recovery to near reference in 1-2 hrs, followed by a slow activity decay to a stable, level plateau approximately 30-40% below reference. Phase 1 consisted of a complex two-step recovery: rapid activity increase to an average 23.6% (range: 11-34%) below reference, forming a level plateau lasting from 5 to 20 min, followed by a climb to within 20% of reference where a second plateau was established for 1 to 2 hrs. Cross correlation profiles showed changes in firing hierarchy after impact, and in spontaneous network oscillatory activity. Native oscillations were found in the Delta band (2 to 3 Hz), and decreased by approximately 20% after impact. Under network disinhibition with bicuculline, oscillations were slower (0.8-1Hz) and decreased 40% after impact. These data link network performance deficits with microscopically observable subcellular changes.

Additional details

Dates

Issued
2025-02-15T14:25:31Z

References

  1. Bakay, L., Lee, J.C., Lee, G.C., and Peng, J.R. (1977). Experimental cerebral concussion part 1: an electron microscopic study. J. Neurosurg. 47, 525-531. https://doi.org/10.3171/jns.1977.47.4.0525
  2. Lucas, J.H., and Wolf, A. (1991). In vitro studies of multiple impact injury to mammalian CNS neurons: prevention of perikaryal damage and death by ketamine. Brain Res. 543, 181-193. https://doi.org/10.1016/0006-8993(91)90027-s
  3. Ding, M.C., Wang, Q., Lo, E.H., and Stanley, G.B. (2011). Cortical excitation and inhibition following focal traumatic brain injury. J. Neurosci. 31, 14085-14094. https://doi.org/10.1523/jneurosci.3572-11.2011
  4. Johnstone, V.P.A., Yan, E.B., Alwis, D.S., and Rajan, R. (2013). Cortical hypoexcitation defines neuronal responses in the immediate aftermath of traumatic brain injury. PLoS ONE 8, e63454. doi:10.1371/journal.pone.0063454 https://doi.org/10.1371/journal.pone.0063454
  5. Gross, G.W., Wen, W., and Lin, J. (l985). Transparent indium-tin oxide patterns for extracellular, multisite recording in neuronal cultures. J. Neurosci. Methods 15, 243-252. https://doi.org/10.1016/0165-0270(85)90105-0
  6. Gross, G.W. (2011). Multielectrode arrays. Scholarpedia 6, 5749. https://doi.org/10.4249/scholarpedia.5749
  7. Gross, G.W. (1994). Internal dynamics of randomized mammalian neuronal networks in culture, in: Enabling Technologies for Cultured Neural Networks. D.A. Stenger, and T.M. McKenna (eds). Academic Press: New York, pps. 277-317.
  8. Lucas, J.H., Czisny, L.E., and Gross, G.W. (l986). Adhesion of cultured mammalian CNS neurons to flame-modified hydrophobic surfaces. In Vitro Cell Dev. Biol. 22, 37-43. https://doi.org/10.1007/bf02623439
  9. Ransom, B.R., Neale, E., Henkart, M., Bullock, P.N., and Nelson, P.G. (1977). Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiological properties. J. Neurophysiol. 40, 1132-1150. https://doi.org/10.1152/jn.1977.40.5.1132
  10. Keefer, E.W., Gramowski, A., and Gross, G.W. (2001). NMDA receptor dependent periodic oscillations in cultured spinal cord networks. J. Neurophysiol. 86, 3030-3042. https://doi.org/10.1152/jn.2001.86.6.3030
  11. Potter, S.M., and DeMarse, T.B. (2001). A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17-24. https://doi.org/10.1016/s0165-0270(01)00412-5
  12. Morefield, S. I., Keefer, E.W., Chapman, K. D., and Gross, G.W. (2000). Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens. Bioelectron. 15, 383-396. https://doi.org/10.1016/s0956-5663(00)00095-6
  13. Meyer, J.M., Wolf, B., and Gross, G.W. (2009). Magnetic stimulation and depression of mammalian networks in primary neuronal cell cultures. IEEE Trans. Biomed. Eng. 56, 1-12. https://doi.org/10.1109/tbme.2009.2013961
  14. Turnbull, L., and Gross, G.W. (2005). The string method of burst identification in neuronal spike trains. J. Neurosci. Methods 145, 23-35. https://doi.org/10.1016/j.jneumeth.2004.11.020
  15. Ts'o, D.Y., Gilbert, C.D., and Wiesel, T.N. (1986). Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by crosscorrelation analysis. J. Neurosci. 6, 1160-1170. https://doi.org/10.1523/jneurosci.06-04-01160.1986
  16. Gerstein, G.L., and Perkel, D.H. (1972). Mutual temporal relationships among neuronal spike trains. Biophys. J. 12, 453-473. https://doi.org/10.1016/s0006-3495(72)86097-1
  17. Ostojic, S., Brunel, N., and Hakim, V. (2009). How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. J. Neurosci. 29, 10234-10253. https://doi.org/10.1523/jneurosci.1275-09.2009
  18. Brewer, G.J., Boehler, M.D., Jones, T.D., and Wheeler, B.C. (2008). NbActiv4 medium improvement to neurobasal/B-27 increases neuron synapse densities and network spike rates on multielectrode arrays. J. Neurosci. Methods 170, 181-187. https://doi.org/10.1016/j.jneumeth.2008.01.009
  19. Smith, D.C., and Gross, G.W. (2014). A MEA-based model for rapid acceleration injury to neuronal networks and studies of recovery. Proceedings of the 9th International Meeting on Substrate Integrated Microelectrode Arrays, 156-157. doi:10.13140/RG.2.1.4395
  20. Ham, M., Bettencourt, L. M., McDaniel, D., and Gross, G.W. (2008). Spontaneous coordinated activity in cultured networks: analysis of multiple ignition sites, primary circuits, and burst phase delay distributions. J. Comput. Neurosci. 24, 346-357. https://doi.org/10.1007/s10827-007-0059-1
  21. Paddock, S.W., and Albrecht-Buehler, G. (1988). Rigidity of the nucleus during nuclear rotation in 3T3 cells. Exp. Cell Res. 175, 409-413. https://doi.org/10.1016/0014-4827(88)90205-4
  22. De Boni, U. (1994). The interphase nucleus as a dynamic structure, in: Mechanical Engineering of the Cytoskeleton in Developmental Biology. R. Gordon (ed). Academic Press: Cambridge, pps. 149-153. https://doi.org/10.1016/s0074-7696(08)61541-7
  23. Pinton, G., Gennisson, J.L., Tanter, M., and Coulouvrat, F. (2014). Adaptive motion estimation of shear shock waves in soft solids and tissue with ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1489-1503. https://doi.org/10.1109/tuffc.2014.3063
  24. Espindola, D., Lee, S., Pinton, G. (2017). Shear shock waves observed in the brain. Phys. Rev. Applied 8, 1-9. https://doi.org/10.1103/physrevapplied.8.044024
  25. Effgen, G.B., Vogel, E.W., III., Lynch, K.A., Lobel, A., Hue, C.D., Meaney, D.F., Bass, C.R., and Morrison, B., III. (2014). Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures. J. Neurotrauma 31, 1202-1210. https://doi.org/10.1089/neu.2013.3227
  26. Buzsaki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926-1929. https://doi.org/10.1126/science.1099745
  27. Vakorin, V.A., Doesburg, S.M., de Costa, L., Jetly, R., Pang, E.W., and Taylor, M.J. (2016). Detecting mild traumatic brain injury using resting state magnetoencephalographic connectivity. PLoS Comput. Biol. 12, e1004914. doi:10.1371/journal.pcbi.1004914 https://doi.org/10.1371/journal.pcbi.1004914
  28. Fisahn, A., Pike, F.G., Buhl, E.H., and Pulsen, O. (1998). Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186-189. https://doi.org/10.1038/28179
  29. Whittington, M.A., and Traub, R.D. (2003). Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 26, 676-682. doi:10.1016/j.tins https://doi.org/10.1016/j.tins.2003.09.016
  30. Gloveli, T., Dugladze, T., Saha, S., Monyer, H., Heinemann, U., Traub, R.D., Whittington, M.A., and Buhl, E.H. (2005). Differential involvement of oriens/pyramidale interneurons in hippocampal network oscillations in vitro. J. Physiol. 562, 131-147. https://doi.org/10.1113/jphysiol.2004.073007
  31. Traub, R.D., Whittington, M.A., Colling, S.B., Buzsaki, G., and Jefferys, J.G. (1996). Analysis of gamma rhythms in the rat hippocampus in vivo and in vitro. J. Physiol. 493, 471-484. https://doi.org/10.1113/jphysiol.1996.sp021397
  32. Draguhn, A., Traub, R.D., Schmitz, D., and Jefferys, J.G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394, 189-192. https://doi.org/10.1038/28184
  33. Sheriff, F.G., and Hinson, H.E. (2015). Pathophysiology and clinical management of moderate and severe traumatic brain injury in the ICU. Semin. Neurol. 35, 42-49. https://doi.org/10.1055/s-0035-1544238
  34. Zenisek, D., Steyer, J.A., and Almers, W. (2000). Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849-854. https://doi.org/10.1038/35022500
  35. Vacher, H., and Trimmer, J.S. (2012). Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia 53, 21-31. https://doi.org/10.1111/epi.12032
  36. Nakata, T., Terada, S., and Hirokawa, N. (1998). Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell. Biol. 140, 659-674. https://doi.org/10.1083/jcb.140.3.659
  37. Maninová, M., Iwanicki, M.P., and Vomastek, T. (2014). Emerging role for nuclear rotation and orientation in cell migration. Cell Adh. Migr. 8, 42-48. https://doi.org/10.4161/cam.27761
  38. Fung, L.C., and De Boni, U. (1988). Modulation of nuclear rotation in neuronal interphase nuclei by nerve growth factor, by gamma amino butyric acid, and by changes in intracellular calcium. Cell Motil. Cytoskeleton 10, 363-373. https://doi.org/10.1002/cm.970100303
  39. Walls, M.K., Race, N., Zheng, L., Vega-Alvarez, S., Acosta, G., Park, J., and Shi, R. (2016). Structural and biochemical abnormalities in the absence of acute deficits in mild primary blast-induced head trauma. J. Neurosurg. 124, 675-686. https://doi.org/10.3171/2015.1.jns141571
  40. Kelley, B.J., Lifshitz, J., and Povlishock, J.T. (2007). Neuroinflammatory responses after experimental diffuse traumatic brain injury. J. Neuropathol. Exp. Neurol. 66, 989-1001. https://doi.org/10.1097/nen.0b013e3181588245
  41. Chen, N.X., Geist, D.J., Genetos, D.C., Pavalko, F.M., and Duncan, R.L. (2003). Fluid shear-induced NFkB translocation in osteoblasts is mediated by intracellular calcium release. Bone 33, 399-410. https://doi.org/10.1016/s8756-3282(03)00159-5
  42. Jaalouk, D.E., and Lammerding, J. (2009). Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63-73. https://doi.org/10.1038/nrm2597
  43. Cho, S., Irianto, J., and Discher, D.E. (2017). Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305-315. https://doi.org/10.1083/jcb.201610042